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Abstract

We propose the problem of tutorial generation for games, i.e.
to generate tutorials which can teach players to play games,
as an AI problem. This problem can be approached in several
ways, including generating natural language descriptions of
game rules, generating instructive game levels, and generat-
ing demonstrations of how to play a game using agents that
play in a human-like manner. We further argue that the Gen-
eral Video Game AI framework provides a useful testbed for
addressing this problem.

Introduction
Artificial intelligence techniques can be used in and with
games in many different ways, to solve problems and create
experiences, as well as to advance AI. Very coarsely, AI can
be applied to generate content (Shaker, Togelius, and Nel-
son 2016), play games, and model players (Yannakakis and
Togelius 2017), though there are many examples of usage
of AI which do not fit these categories cleanly. Looking at
AI-based game design patterns, one can see AI occasionally
being used in somewhat more obscure roles such as specta-
cle, trainee or co-creator (Treanor et al. 2015).

With this paper, we seek to introduce yet another interest-
ing problem, and role, for AI in games. The problem is that
of generating tutorials (or instructions) and the role is that of
teacher. We can loosely define it as: given a game, generate
a way to teach players how to play it.

Most video games feature some kind of tutorial or instruc-
tions to assist players in getting started, and creating such tu-
torials is a complex task that requires skill and time. In other
words, it is a great candidate for total or partial-automation.
Furthermore, if we can find good methods for generating tu-
torials, these methods can be used to help teach people to
perform a large variety of other tasks.

This paper surveys the (scant) literature on game tutorials
and makes a few basic distinctions between types of tuto-
rials. We then discuss some possible approaches to tutorial
generation—it turns out this problem has much in common
with, and builds on advances in, human-like game playing as
well as procedural content generation (Shaker, Togelius, and
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Nelson 2016). Finally, we discuss what it would take to gen-
erate tutorials within the General Video Game AI (GVG-AI)
framework.

Background
Tutorials are the first interactions players encounter in a
game. They help players understand game rules and, ulti-
mately, learn how to play with them. In the game indus-
try, developers experimented with different tutorial formats
(Therrien 2011). In the arcade era, when most games were
meant to be picked up and played quickly, they either had
very simple mechanics, or they contained mechanics that
players could relate to: “Press right to move”, “Press up to
jump”, and so on. As a result, these games usually lacked
a formal tutorial. As their complexity increased and home
consoles started to explode in popularity, formal tutorials be-
came more common.

Some game developers tried using an active learning ap-
proach which was optimized for players that learn through
experimentation and exploring carefully designed levels.
Games like Megaman X (Capcom, 1993) follow this ap-
proach. Other developers relied on old-school techniques,
teaching the player everything before they could play the
game, such as in Heart of Iron 3 (Paradox Interactive, 2009).
While one cannot argue that one technique is always su-
perior to another, different techniques suit different audi-
ences and/or games (Andersen et al. 2012; Williams 2009;
Ray 2010).

Tutorials have evolved significantly over time, from the
simple directive of Pong (“Avoid missing the ball for high-
score”) to the exquisitely detailed in-game database of Civ-
ilization (Therrien 2011). Suddaby describes multiple types
of tutorials (Suddaby 2012), from none at all to thematically
relevant contextual lessons, where the tutorial is ingrained
within the game environment.

Tutorial types are related to the different learning capabil-
ities of the users who play them. Sheri Graner Ray (2010)
discusses different knowledge acquisition styles in addition
to traditional learning styles: Explorative Acquisition and
Modeling Acquisition. The first style incorporates a child-
like curiosity and “learning by doing”, whereas the second
is about knowing how to do something before doing it. We
can define at least two distinct tutorial styles from this, one
being exploratory during gameplay and the other being more



instructional before the game even begins.
Williams suggests that active learning tutorials, which

stress player engagement and participation with the skills
being learned, may be ineffective when the player never
has an isolated place to practice a particularly complex
skill (Williams 2009). In fact, Williams argues that some
active learning tutorials actually ruin the entire game expe-
rience for the player because of this reason. According to
Andersen et al., the effectiveness of tutorials on gameplay
depends on how complex a game is to begin with (Ander-
sen et al. 2012), and sometimes are not useful at all. Game
mechanics that are simple enough to be discovered using
experimental methods may not require a tutorial to explain
them. From these two sources, we find our first two bound-
aries for tutorial generation: there exists mechanics that are
too simple to be taught in a tutorial, and there are mechan-
ics complex enough that they may need to be practiced in a
well-designed environment to hone.

In general, a game developer would want to use the most
suitable tutorial style for their game. For that purpose, they
must understand different dimensions/factors that affect the
tutorial design process and outcome. Andersen et al. (Ander-
sen et al. 2012) measured how game complexity affects the
perceived outcome of tutorials. In their study, they defined 4
dimensions of tutorial classification:
• Tutorial Presence: whether the game has a tutorial or not.
• Context Sensitivity: whether the tutorial is a part of story

and game or separate and independent from them.
• Freedom: whether the player is free to experiment and

explore or is forced to follow a set of commands.
• Availability of Help: whether the player can request for

help or not.
The classification proposed by Andersen et al. is binary.

However, it is useful to see tutorials situated on a continuum
between these extremes, as this allows us to gain a more nu-
anced understanding of game tutorials. For example: Figure
2 shows the tutorial in Braid (Number None, Inc, 2008) for
a time rewinding mechanic. The tutorial only appears based
on a certain event, i.e. the player’s death. Players will not
know about the mechanic until their first death. Instead of
having the tutorial available at anytime or showing how to
use the mechanic at the beginning, the developer reveals it
when it is first necessary.

Sampling this space and comparing it with current game
tutorials, we can find patterns repeated in multiple games.
We can highlight the following tutorial types, which are not
the only tutorials present in the space, but appear to be the
most common ones:
• Teaching using instructions: These tutorials explain

how to play the game by providing the player with a
group of instructions to follow, similar to what is seen in
boardgames. For example: Strategy games, such as Star-
craft (Blizzard, 1998), teach the player by taking them
step by step towards understanding different aspects of
the game.

• Teaching using examples: These tutorials explain how to
play by showing the player an example of what will hap-

pen if they do a specific action. For example: Megaman X
uses a Non Playable Character (NPC) to teach the player
about the charging skill (Egoraptor 2011).

• Teaching using a carefully designed experience: These
tutorials explain how to play the game by giving the player
freedom to explore and experiment. For example: in Super
Mario Bros (Nintendo, 1985), the world 1-1 is designed
to introduce players to different game elements, such as
goombas and mushrooms, in a way that the player can
not miss (Credits 2014). One way of seeing that is that
early obstacles are instances of patterns, which reoccur
later in the game in more complex instantiations or com-
binations (Dahlskog and Togelius 2012).

Figure 1: Street Fighters arcade cabinet. The cabinet shows
different combos that can be done.

A game can have more than a single tutorial type from the
previous list. Arcade games used demos and instructions to
both catch the attention of the player and help them learn
it. The demos help to attract more players, while simultane-
ously teaching them how to play. On the other hand, showing
an information screen before the game start, such as in Pac-
man (BANDAI NAMCO, 1980), or displaying instructions
on the arcade cabin, frequently seen in fighting games, helps
the player understand the game and become invested in it.
Figure 1 shows Street Fighters arcade cabinet where differ-
ent characters combos and moves are written on it. Mega-
man X uses a carefully designed level to teach the player
what to do, but still gives an example of the powershot at-
tack if the player missed it.

Previous work has been done related to tutorial genera-
tion, especially in the area of aiding beginners, such as in
Blackjack heuristics (de Mesentier Silva et al. 2016), by
evolving the heuristics to be effective and concise. Simi-
larly, TutorialPlan (Li, Zhang, and Fitzmaurice 2013) gener-
ates text and image instructions for users to learn AutoCAD.
Work has also been done in automatic tutorial generation
for API coding libraries (łł 2014), which claimed that the re-
sulting generated tutorials helped users learn libraries more
effectively than current auto-generated tutorials. Alexander
et al. postulated that open world mechanics could be trans-
formed into quests (Alexander and Martens 2017). By for-



Figure 2: Braid teaching time rewinding mechanic when the
player dies.

malizing the game logic of Minecraft into rules, they were
able to create action graphs representing the player expe-
rience, and create quests and achievements based off those
actions.

Game-O-Matic (Treanor et al. 2012) is a system which
generates arcade style games and instructions for them by
using a story-based concept-map inputted by a user. After
the game is created, Game-0-Matic generates a tutorial page,
explaining who the player will control, how to control them,
and winning/losing conditions, by using the concept-map
and relationships between objects within it.

How could tutorials be generated?
There already exist numerous artificial agents for a variety
of video games. We theorize that if an agent can beat a video
game, it could also build a tutorial using parts of the method-
ology that it used to win. An agent could do so by construct-
ing a game-mechanic graph, similar to the mission-graph as
described by Dormans (Dormans 2010).

With the knowledge of what it takes to beat a level (or
to accomplish a specific goal), the agent could construct the
graph so that leaf nodes contain terminal states, such as fin-
ishing a side quest or beating the level. Nodes in between
the initial state and a terminal one would contain mechanics
that lead to a terminal state such as player death or winning
the game.

Figure 3 displays a tutorial graph created for Space In-
vaders (Taito, 1978). The green nodes are actions that equate
to a critical victory path. Doing these actions will eventu-
ally result in victory. Red nodes are a critical loss, and doing
these actions could result in losing the game. All nodes could
be transformed into steps in a tutorial. The steps will explain
how to achieve victory, avoid loss, or other subgoals such as
how to score points. It is important to mention that nodes not
on a critical path of either type can optionally be present in
a tutorial and are not necessary.

The graph is flexible enough to be incorporated into dif-
ferent types of tutorial methods, for example those described
in the previous section using instruction, examples, and a
carefully designed experience for Space Invaders:

• Tutorial using instructions: Using the text in the node as

a start, a grammar could piece together sentences explain-
ing each critical node on the winning and losing paths.
The user would see text with phrases like “Press the left
and right arrow keys to move left and right.”

• Tutorial using examples: Since the graph was built by an
agent, we can assume the agent learned these mechanics
and can replicate them. The tutorial generator could build
an example by creating a level stage that would isolate
the action or behavior contained within each node. The
user would see a human-like artificial agent, such as one
created by Khalifa et al. (Khalifa et al. 2016a), using the
isolated movement mechanic, moving left and right on the
screen. Using a human-like AI should help ensure that it
would take similar actions to that of a human being, so
that the observing player might learn more effectively.

• Tutorial using a carefully designed experience: This
combines the tutorial using examples experience with
levels that revolve around the mechanics to be learned.
Rather than an artificial agent playing, the player would
be in control. A level generator would be generating levels
based around the critical path nodes. One such designed
level would introduce player movement and shooting, and
eventually move up to shooting aliens, finally teaching
that killing all aliens will win the level, whilst still allow-
ing the player to move around freely and unrestricted.

Figure 3: A Space Invaders tutorial graph. Green nodes are
on a critical victory path. Red nodes are on a critical loss
path

A tutorial generation system for teaching using instruc-
tions would require some sort of text generation engine,
which would create text to be shown to the player to teach
them how to play. The most obvious choice for this would
be a grammar-based system, as it would allow the great-
est amount of flexibility, especially over a simple text-
replacement system. Grammars have been shown to be
highly effective generators of content in the past (Rumel-
hart 1975; Pemberton 1989; Dormans 2011; Dormans and
Bakkes 2011; Dart, De Rossi, and Togelius 2011; Togelius,
Shaker, and Dormans 2016; Callaway and Lester 2002). One
such example of a grammar-based text generative tool is
Tracery (Compton, Filstrup, and others 2014), which was



made to generate stories with a pinch of the nonsensical. Sto-
ries generated by Tracery are not bound to be causal or even
make much sense. Past research (Lang 1999) has shown that
a system that generates sophisticated story-lines requires
massive amounts of meta-data, which is often unwieldy, ex-
pensive in overhead, and arguably inflexible. Luckily, a tuto-
rial generation system would not be required to tell a story,
but rather teach the player how to play a game. Therefore, we
believe that a grammar-based generator will suffice, even if
it does not write causally.

Another way to generate text is using an artificial agent
would explain its actions as it plays the game. Schrodt et al
created an artificial agent to play Super Mario, which lit-
erally ”thought-out-loud” as it played the game (Schrodt,
Röhm, and Butz 2017). This technique of voicing intent or
decision during play is known as framing (Charnley, Pease,
and Colton 2012). The human-like AI mentioned before
could be modified to explain its decision-making in real-
time in order to teach a human-player how to play.

GVG-AI Tutorial Generation
The GVG-AI Framework provides a testbed for researchers
to solve the problem of general video game-playing artificial
intelligence, a competition where competitors can design
AI agents that play a variety of unseen games efficiently.
Multiple competition tracks are available to compete in, in-
cluding Agent (Perez-Liebana et al. 2016), Level Generation
(Khalifa et al. 2016b), Multiplayer Planning (Gaina, Pérez-
Liébana, and Lucas 2016), Learning, and Rule Generation.

In this paper, we propose a method of tutorial generation
and provide a possible beginning for a tutorial generation
track for GVG-AI.

Because of the wide-ranging nature of game types in the
GVG-AI framework, generated tutorials would have to be
applicable to a variety of game styles and mechanics. As
all games in GVG-AI are written in VGDL, tutorial genera-
tion can be done by simply reading the various interactions
and terminations in the game’s VGDL file and translating it
into an easy-to-read, concise format. Before the first level of
the game begins, a text display demonstrating button usage,
enemy types, the player, and collectibles would be shown,
as well as pointing out the main goal of the game. Tutorial
generation can be divided into mechanic discovery, graph
creation, and text generation, all of which will be described
in the following subsections.

Mechanic Discovery
To generate a tutorial, our engine must first learn all rele-
vant game mechanics. Using the Sprite, Interaction, and Ter-
mination sets contained within the game’s VDGL file, the
engine would record interactions between various sprites,
movement controls, and terminal states. For example, Figure
4 shows the interaction and termination sets for Space In-
vaders. The avatar is defined in the SpriteSet to be a FlakA-
vatar, which means it can shoot missiles. In the Interaction-
Set, missiles that collide with EOS (End of Screen) are de-
stroyed.

An alternative to reading the interaction rules is using ar-
tificial agents to play the game. An AI agent would explore
the game space, and discover game mechanics on its own.

Build Graph
The engine must have some way of understanding and relat-
ing game mechanics to one another. We propose a graph-
based rule-set interpretation. The engine would create a
graph based off the discovered mechanics, where each node
contains a mechanic of some kind. Nodes that are connected
to each other are related in some way. Leaf nodes can contain
terminal states for the game, such as win or loss. If the ter-
minal state is a winning state, this would become a potential
candidate for the critical path, the shortest interaction chain
necessary to win the level out of all interaction chains. This
path would be the key goal the generator would recommend
doing. Other paths that include losing states would corre-
spond to things the generator would recommend not to do.
Paths that have score changes, either in a positive or negative
way, would correlate to actions the generator would recom-
mend to either do often or avoid doing as much as possible.
Multiple critical paths might result from this, which means
the generator would have to find the most efficient critical
path.

Alternatively, the engine could use a human-like AI
(Khalifa et al. 2016a) armed with the knowledge of these
discovered mechanics. This agent could play the game sim-
ilarly to a human player to discover the critical path. Any
game mechanics that it associates with loss would be placed
on a critical loss path, and any game mechanics that it asso-
ciates with winning would be placed on a critical win path.

Here is an example of how the engine would build an in-
teraction chain. In GVG-AI the arrow keys are assumed to be
the movement controls. Referencing Figure 4, the avatar (the
player) is defined to be a ”FlakAvatar” which is restricted to
only horizontal movement. Thus the first green node would
be created with references to ”move”, ”player”, and ”left-
right” movement using ”arrow keys”. Now within the inter-
action set, the system would first look for associations to
”avatar” to add to the chain. It would see the first interac-
tion ”avatar EOS > stepBack”, which means the avatar can
not move outside the bounds of the screen. A node would
be created with associations to ”player”, ”not move” and
”EOS” and linked to the previous node, as they are related
via ”avatar” and ”movement”.

Generate Text with Grammar
A tutorial is not complete without some vehicle through
which to educate the player about the game. Using the graph
of game mechanics, the engine would generate a text-based
tutorial to display instructions to the player using a gram-
mar for building blocks. Grammar 1 displays an example
grammar that could be used for a GVG-AI Tutorial Gener-
ator. Using the grammar, the system would designate which
of the sentence types are applicable for a given node. For
example. The bottom-right green node (”Player can move
left and right (using arrow keys)”) references a behavior
about movement (an Action Verb), the player (a Sprite),
and infers arrow key controls (Control Verb and Button).



〈tutorial〉 ::= 〈win〉 〈lose〉 〈negative〉 〈positive〉
〈mechanics〉 〈controls〉

〈win〉 ::= ’To win’ 〈actionVerb〉 〈helpingAdj〉 〈sprite〉

〈lose〉 ::= ’To lose’ 〈actionVerb〉 〈helpingAdj〉 〈sprite〉 | ε

〈negative〉 ::= ’Avoid’ 〈actionVerb〉 〈sprite〉 〈negative〉 | ε

〈positive〉 ::= 〈actionVerb〉 〈sprite〉 〈positive〉 | ε

〈mechanics〉 ::= 〈mech〉 〈mechanics〉 | 〈mech〉

〈mech〉 ::= 〈sprite〉 〈helpingVerb〉 〈actionVerb〉
〈helpingAdjective〉 〈sprite〉

〈controls〉 ::= 〈cont〉 〈controls〉 | 〈cont〉

〈cont〉 ::= 〈controlVerb〉 〈button〉 ’to’ 〈actionVerb〉 〈sprite〉

〈helpingAdj〉 ::= ’all’ | ’every’ | ’one’ | ’some’ | ’none’ | ε

〈helpingVerb〉 ::= ’can’ | ’can not’ | ’will’ | ’will not’ | ε

〈actionVerb〉 ::= ’move’ | ’shoot’ | ’dodge’ | ’kill’ | ’destroy’
| ’collide with’ | ’beat’ | ’lose’ | ’win’

〈controlVerb〉 ::= ’press’ | ’hold’ | ’release’

〈button〉 ::= ’arrow keys’ | ’left and right’ | ’space bar’

Grammar 1: An example grammar for GVG-AI games.

Thus the system would determine that a Control Sentence
would be most applicable to this node, and form the sentence
”Press arrow keys to move player”. The second bottom-
most red node (”Aliens shoot missiles”) would be deter-
mined to be a Mechanic Sentence, as it references behav-
iors pertaining to Alien and Alien Missile (two Sprites) and
”shoot” (an Action Verb). Thus the engine would build a
sentence ”Alien shoots alien missile”. Of important note,
<sprites> are not defined in the grammar, as they differ be-
tween games in GVG-AI. Space Invaders has sprites such as
“Alien” and “Missile” whereas Solarfox contains “Blib” and
“PowerBlib”.

Conclusion
Ideas behind designing game tutorials have evolved over
time. It is ironic that, while so much effort has been put
into generating levels, textures and stories, little to no ef-
fort has been made into automatically generating what is the
first interaction between players and the gameplay. This pa-
per proposes the problem of automatically generating game
tutorials through the lenses of an AI problem. It expands on
the four dimensions defined by Andersen et al (Andersen
et al. 2012) for classifying different types of tutorials, and
highlights three mainstream tutorial types: Teaching using
instructions, using examples and using a carefully designed

Figure 4: Part of the rules for Aliens in VGDL

experience. It is our belief that the GVG-AI framework can
be a useful testbed for experimenting with tutorial gener-
ation. Finally, we propose a graph-based rule-set interpre-
tation of an agent playthrough, presented to the player as a
grammar-based text tutorial. As it is, that proposal is our first
future step.
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