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Abstract—This work investigates how to incorporate
real-world data into game content so that the content is
playable and enjoyable while not misrepresenting the data.
We propose a method for generating balanced Civilization
maps based on Open Data, describing how to acquire,
transform and integrate information from different sources
into a single content. Furthermore, we evolve players’
initial positions in order to obtain balanced maps, while
trying to minimize information accuracy loss. In addition,
this paper describes a tool to assist users in this process.
Maps generated using these method and tool are playable
and balanced yet faithful to the original sources.

Keywords—Data games, map generation, procedural con-
tent generation, Civilization.

I. INTRODUCTION

Why do we need to design video game maps and
levels? Why can’t we just use the real world instead?
Many video games feature topological content in a
functional role. Players are often tasked with inter-
acting with some sort of map: moving their char-
acters across it, direct units around it, or building
things on it. In game development, large resources
go into making rather small maps; even AAA games
(i.e. games with high budgets for development and
marketing) renowned for their world building (such
as Skyrim or Grand Theft Auto) commonly feature
maps that are just a few kilometers across. Real-time
strategy games and first-person shooters commonly
launch with just a few good multiplayer maps.

The lack of expert-designed content drive play-
ers to generate their own content in many games.
Steam Workshop (a community for player-generated

content) features tens of thousands of player-created
maps for various games. A simple search for
“earth map” in the Civilization Fanatics Center fo-
rum1 returns 300 different entries. However, player-
generated content is not likely to solve this content
shortage on its own, as not all games (or players)
are as easy or engaging to generate content for, and
that such content is not generated according to the
constraints or wishes of either game developers or
players. There is clearly a content shortage.

Procedural content generation (PCG) techniques
have been proposed to deal with the content shortage
problem, and are commonly used in some games;
this includes some strategy games such as Civiliza-
tion, where each game starts with a freshly generated
maps [1]. However, current techniques only allow
fully automatic generation of maps for some types
of game designs. For many games, generated maps
may come across as unbalanced or uninteresting,
and so are not used.

So why don’t we just use the real world for our
game maps? The real world is huge, meaning there
will certainly be enough content for almost any type
of game, and undoubtedly interesting by virtue of
being lived in and shaped by a multitude of people
and their histories. Everyone has a special connec-
tion to one or several places in the world; imagine
playing a strategy game in the province of your
hometown or an adventure game in your workplace.
While a map based on the real world could be as
uninteresting as a poorly human-designed map, if

1Civilization Fanatics Center : http://forums.civfanatics.com/978-1-4799-7492-4/15/$31.00 c©2015 IEEE



the same amount of polishing is performed on a map
based on the real world as on one that is not based
on the real world, the former have greater odds of
being more interesting. Basing game maps on the
real world could also decrease development time
and potentially increase diversity and productivity.
The increase of open data use has resulted is a
large amount of information available about multiple
facets of our world, and this amount is growing
all the time. With (semantic) web technologies, we
should be able to simply pour this data into our
games. The process, for example, of transforming
the map of Europe into a Civilization V or Sim City
4 map has no longer to be the arduous work of users
who wish to play in it, but can be created for the
user in an automatic or semi-automatic manner.

The significance of this goes beyond making
games more fun. If we base our games on real data,
we might also learn about the world as we play. A
game could showcase particular parts or facets of the
world’s geography, simply tweaking data selection.
Interacting with the game could mean interacting
with a faithful representation of the real world.

So why are current game maps not generated
from real-world maps? Because the world was not
designed to be played on. At least not without a
number of adjustments. Game designs put various
constraints on maps and levels, and these constraints
are often not met by the real world. A real-time strat-
egy game map might need a balanced distribution
of resources, a first-person shooter might need cover
points and weapons caches, an adventure game will
need world elements that support its storyline and so
on. It is likely that someone has forgotten to equip
your hometown with these features.

One way of resolving this would be to start
with parts of the real world and use PCG methods
to change it into a playable map or level. Move
things around, and remove or add parts until the
content works with the game design. This carries
the downside that the in-game world is subverted so
that it no longer matches the outside world. This can
possibly suspend disbelief, reduce enjoyment and/or
certainly negate any learning effects by essentially
lying about the world.

Instead, this paper tackles the harder challenge of

being true to both the game and the world: taking
open data about the world and transforming it into
playable game content while minimizing the intro-
duction of inaccuracies. There are essentially two
ways of doing this: by choosing which aspects of
the world to model, and by procedurally generating
those parts of the game which are peculiar to the
game design and which do not have direct counter-
parts in the real world. Concretely, we will create
maps for a version of Civilization that reproduce
parts of the real world – any part the player chooses,
at any scale – and find combinations of resources
and starting positions that allow for entertaining and
balancing gameplay. Our solution involves merging
of data from multiple sources, and a balancing
mechanism based on evolutionary computation.

II. MAP GENERATION

Many methods for map generation have been pro-
posed before. One way to get interesting results and
fast runtime is the use of fractals: using diamong-
square algorithm to iteratively divide the space,
changing the midpoint slightly by a random value
[2], [3]. This, however, does not allow for much
control. Dungeon layouts can also be produced by
placing various sized rooms and hallways on a two-
dimensional area, using as fitness function the length
from start to finish [4]. Togelius et al [5] use search
based PCG through multiobjective evolution to cre-
ate maps for StarCraft. StarCraftmap generation was
also attempted by Uriarte and Ontan, using Voronoi
diagrams to define the initial terrain layout and
populating it using metrics [6]. Cardamone et al [7]
evolved FPS maps, using as fitness function the time
that a player spent alive and fighting, and the free
space of a map. Mahlmann et al. [8] proposed a
search-based algorithm to generate playable maps
for RTS Dune 2. In [9], another search-based algo-
rithm creates maps for Planet Wars.

III. DATA GAMES

Data games are games that use real-world open
data to create content that appears in-game. There-
fore, these data can be explored while playing, al-
lowing different forms of visualisation and learning
to emerge from it [10], [11]. However, the data in
itself can be hard to obtain and is usually not in a



form that allows it be straightforwardly incorporated
into the game, thus creating the dual challenges of
data acquisition and data transformation.

An early example of a data game is Open
Data Monopoly [12]. Here, Friberger and To-
gelius created a Monopoly board generator based
on real-world demographic information. Similarly,
Urbanopoly [13] uses open data to generate story-
boards.Bar Chart Ball [14] is a data game where
the player moves a ball that sits on top of a bar
chart by choosing different demographic indicators,
which change the shape of the chart in question.
Another examples is Open Trumps [11], a card
generator for the simple card game Top Trumps.
Sets of cards are automatically created and balanced
based on countries using evolutionary algorithms.
Several examples of further data game prototypes
can be found in a recent overview paper [10].

IV. CIVILIZATION AND FREECIV

Civilization is an epic turn-based strategy game
designed by Sid Meier released in 1991, which has
been very influential and received multiple sequels.
In this game, the player takes on the role of leading
a civilization through 6000 years of history. While
the game features military conflict and can be won
through conquest, large parts of the game focus on
exploring the world, founding and growing cities,
planning production, balancing a budget, and con-
ducting scientific research. A game of Civilization
is to a large extent defined by the map topology
and which other civilizations and resources (coal,
gold, etc) are available in different places. The
game design, which rewards exploration and only
reveals certain resources once a particular level of
technology has been reached, means that interesting
conflicts and complex gameplay can arise out of
resource competition. At the beginning of a new
game, a complete new map is generated in order
to provide novelty. The use of maps that simulate
the real world make Civilization a useful testbed.

FreeCiv is an open source turn-based strategy
game, inspired by the Civilization series, and com-
parable to Civilization I and II2It is written by a team

2FreeCiv: https://play.freeciv.org/

of enthusiasts in C, and scriptable via Lua. We use
FreeCiv in this study because it is open source.

V. DATA ACQUISITION

Two different categories of data were necessary
for this generation: terrain information and resource
locations. The former is acquired just before the
actual map generation, rendering the map with
OpenStreetMap (OSM), a community based world-
mapping project [15]3, and JMapViewer, a Java
component that can incorporate an OSM map into a
Java application4. An interactive tool was developed
to assist the importing process and manage resource
map images from the user’s computer, and to allow
for the selection areas for generating the map using
JMapViewer. We could not find a single source of
information for all (or most of) resources, and map
images differ greatly in design so a single pattern
could not be used for recognition. Thus, user input
is required during the importing process.

A. Resource locations

Information about resource locations was ob-
tained by processing images in three steps. In
the first step, several images were collected using
searches in the Google search engine, with sentences
like ”oil deposit + maps”. These images were saved
and fed to the developed tool, as shown in Fig. 1.

In step 2, the tool displays this image on screen,
and allows selection of resource type (coal, oil,
gems, gold or iron), as well as colors from the image
(Fig. 1). For each color selected, it is necessary to
define its type (i.e. resource, background, terrain
or water). Selected shades are used to infer non-
selected ones, using a color similarity algorithm.
This works as follows: a new blank image is created
with the same dimensions as the original one. For
each color ci in the original image, a distance is
calculated between ci and all selected colors. The
shade with the smallest distance is then applied to
the new image. Distance is calculated using DeltaE
1994, or ∆E 1994, a distance metric between two
colors in the CIE Lab color space. CIE Lab is a color

3http://www.openstreetmap.org/
4http://wiki.openstreetmap.org/wiki/JMapViewer



Fig. 1: Left: Importing resource image screen. Users can select a file from their computer in this screen.
Middle: Another screen from the importing tool. Users can select colors from the left side of the screen.
On the upper right corner, a preview of the resource version is shown. On the bottom right, users can see
each color and its resource type. Right: Third and final resource importing feature screen. User can select
a rectangle from the map and save the file.

representation based on a vertical L* axis (”Light-
ness”), that ranges from 0-100, and two horizontal
axes a* and b* (green and red, respectively) [16].
This step allows for inferring the type represented
by all colors by selecting only a few shades. Water-
marks and text in images can be handle by either
selecting the color as background (thus essentially
excluding it) or, if the whole mark is within terrain
or water, selecting the appropriate type.

In the final step the user can select a rectangle
in an actual world view rendered with JMapViewer,
indicating were the image would fit inside the world,
as seen in the right-most image in Fig. 1.

B. Terrain information

Terrain information is obtained just prior to
the actual generation of maps. Using the interface
shown in Fig. 2, the user can zoom in and out and
select a portion of the map, as well as the resolution
and name of the final FreeCiv map. The selected
portion is then saved as an image and processed
later, during data transformation.

VI. DATA TRANSFORMATION

The map generation process consists of four
steps: map selection and terrain transformation, re-
sources intersection and creation, players’ initial
positions, and finally post-processing.

A. Map selection and terrain transformation

In the map selection, a world image is extracted
as explained in V-B, and recorded as an image.
Longitude and latitude coordinates from top left and
bottom right corners are gathered for latter use. In
addition, the user can select the final map’s name
and dimensions. This image is then rescaled to the
desired dimensions. An integer matrix mapTerrain
with the same size is also created and initialized with
zero values. For each pixel in the original image, a
value is attributed to the matrix’s relative position,
using the color of that pixel as terrain type (green
pixels represent forest, blue pixels ocean or lake,
etc). If the original image is greatly larger than the
output, parts of it will be comprised into chunks.

Fig. 2: World place selection for map generation.



Fig. 3: Pseudo-code for resource position selection.

B. Resource intersection and creation

Subsequently, these coordinates or the image
corners are used to select intersecting resources’
information. An array of images, resourcesImgs,
represents the resources. At first, all images are
initialized with black pixels and the same size as
the map. Each image represents a resource type
(e.g. coal or oil). For each resource imported, the
intersecting rectangle is chopped off it and merged
in the relative position of the image. Resources are
painted white, and all others are ignored.

Afterwards, a character matrix, mapResources, is
created with similar dimensions as mapTerrain, and
initialized with blank spaces. The resource insertion
algorithm is shown in Fig. 3. For each image in
resourceImgs, and for each tile in mapResources,
the resource type and its character representation are
extracted. If a pixel in resourceImgs indicates that
there can be a resource there, it has %0.35 prob-
ability of being assigned. Resources not imported
in the resource deposits’ location process (V-A) are
randomized in empty, terrain compatible spaces.

C. Players’ initial positions and post-processing

The third step evolves initial positions on map,
using a evolutionary strategy algorithm. The algo-

rithm and fitness functions are discussed in detail
in VII. Finally, in last step auxiliary choices (e.g.
player civilization) are made at random. All data is
saved in FreeCiv’s save file format.

VII. EVOLUTIONARY BALANCING

Our strategy for balancing maps focuses on base
position. Given a terrain and resource map, the
positions for n given players is evolved using a
12 + 88 evolution strategy with one-point crossover
and random initialization. This algorithm was cho-
sen because of its simplicity and robustness. The
individuals are represented as vectors of length 2n,
where n is equal to the amount of players. This
vector contains x and y-values of each player’s base.

Our implementation differs from standard evo-
lution strategies through the use of cascading
elitism [17] in selection. Each generation, selection
happens as follows: Initially, fitness fDBi is used to
sort the population, and the lower rated half of the
population is eliminated. The remaining population
is resorted using fORi, and again half of it is
eliminated. Again, remaining individuals are sorted
and half eliminated, now according to fBPRi.
The remaining eighth of the population is cloned
repeatedly, until it returns to its original size. Each
new individual has 20% chance of being mutated.
If it is, each base of that individual also has 20%
of being replaced with a new position. Then, the
mutated population is passed to the next iteration.
The order of fitness (fDBi, fORi and fBPRi) was
chosen after testing with all possible combinations.

Fitness calculation takes into account explo-
ration and fairness. By exploration, we define the
necessity of searching new places and how far can
one player go before encountering another one. It
is measured by a value fDBi, short for fitness of
distance between bases, as shown in Eq. 1.

fDBi =


1−

(√∑n
i=0(meandist−distij)2

n

)
,

�if distmin > threshold

0, else

meandist =

(∑ distij
distmax

)
÷ n

(1)



where n is the amount of players, distij is the
distance between two bases i and j, distmax is
the maximum distance in map (i.e. its diagonal).
meandist represents the average normalised distance
between all bases. Thus, fDB is 1 minus the
standard deviation of distances between bases. We
do this inversion to maximize the value, so we can
search for a maximized fitness. In truth, the lower
the standard deviation, the better, since we would
obtain a more equal distance among all bases.

Fairness, on the contrary, implies giving similar
opportunities to every player of obtaining resources.
It is measured by fBPRi and fORi (short for
fitness of bases per resources and fitness of owned
resources), shown in Eq. 2 and 3, respectively.

fBPRi = 1−

√∑n
i=0 (bigMean−meani)

2

n


bigMean =

n∑
i=0

meani

meani =

(
qR∑
j=0

disti→j

distmax

)
(2)

where n is amount of players, disti←j is distance
between bases i and resource j, distmax is maximum
distance in map, qR is total amount of resources.
It represents standard deviation of average of the
average distances between resources and bases.

fORi =

1−

√∑n
i=0

((∑n
i=0

si
qOR

)
−si

)2

n
if qOR 6= 0

0 if qOR = 0
(3)

where qOR is total quantity of owned resources
in map, n is amount of players, and si is amount of
safe resources owned by base i. A safe resource is
one that is closest to i than to all other bases, and
that is guarded by base i itself, in the sense that any
other player who tries to get to it has to pass by i
first. If there is no owned resource, it returns 0.

VIII. RESULTS AND DISCUSSION

A. Balancing Results

Three different series of experiments, of 10 runs
each, were performed using random maps, pop-
ulated with water, grassland and resources. The
first batch had maps of 100x100 dimension and
10 players, the second had the same dimensions,
but 10 bases; and the last was 250x250 with 5
bases. Initial positions were evolved in 200 iterations
using the method described in Section VII. Fig. 5
shows, for each fitness, the average between the
best individuals of that iteration (in said feature)
in all runs. All three features show a increase over
time, but the outcome is higher when using a larger
map, especially for fORi. fBPRi show a smaller
difference between tests, probably due to being the
last feature used in the cascading process.

Another experiment was done using a NSGA-
II, a multi-objective optimization algorithm [18]. It
attempts at minimizing the inverse of each fitness
(fDBi, fORi and fBPRi) without them damaging
each other. It used 10 experiments with maps of
100x100 dimension, 5 bases and 250 iterations, and
results are shown in Fig. 4. Fitness fORi seems to
optimize much faster than the others. Further inves-
tigation using multi-objective algorithms is planned.

B. Map creation

Some of the maps generated are shown below.
Fig. 7 shows a map of Denmark, in-game. Fig. 6
show maps from Europe, Africa, and North and

Fig. 4: Graph that shows the fitness convergence of
the NSGA-II algorithm.



Fig. 5: Average convergence of the algorithm with different map sizes and quantity of bases. Left: Using
100x100 map and 10 bases. Middle: 100x100 map and 5 bases. Right: 250x250 map and 5 bases.

Fig. 6: Top left: Europe. Top right: Africa. Bottom left: North America. Bottom Right: South America.

Fig. 7: Map of Denmark, in-game, on the left. On the right, the right upper are (highlighted in red) of
map is zoomed in. Note that it has isometric topology, thus is ”inclined” to the right in comparison to the
original map image.

Fig. 8: Maps generated using Denmark as input, with 25x30 (top left), 50x40 (bottom left) and 150x121
(right) dimensions.



South America. As can be seen, the generated maps
retain essential geographical information. Fig. 8
compares loss of quality in a level of 25x20, 50x40
and 150x141 dimension, showing a small amount of
difference in comparison with the original, which is
the exact same as the one shown in Fig. 2.

One problem encountered was that some resource
maps gathered from the internet had the wrong
proportions or required tilting and/or warping to
properly fit the OSM view. This lead to some
erroneous placing (e.g. placing coal mines where
they do not exist in reality).

The current generator and tool is fully functional,
but could be improved in several ways. For exam-
ple, the current evaluation function could be more
accurate by using simulations, using AI agents to
play on the maps in order to evaluate them. It would
also be interesting to make a complete user study of
the system, including its usability and the perceived
fairness, accuracy and playability of generated maps.

IX. CONCLUSION

This paper describes a method for creating com-
plete, playable maps based on open data about the
real world for a clone of the popular strategy game
Civilization. The method creates maps that are true
to the real world, by preserving the topology of the
map, as well as the placement of various resources.
The method is incorporated into a framework which
lets the user select any part, of any size, of a world
map and create a playable civilization map out of
this area. This tool can serve the dual purposes
of enabling more interesting content generation and
providing a way of exploring the real world by play-
ing on it. We believe that with slight modifications,
this method could apply to other games that feature
maps or map-like levels.
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